
NAG Fortran Library Routine Document

D02EJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02EJF integrates a stiff system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a variable-order, variable-step method implementing the Backward Differentiation
Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and returns the solution
at points specified by the user, if desired.

2 Specification

SUBROUTINE D02EJF(X, XEND, N, Y, FCN, PEDERV, TOL, RELABS, OUTPUT, G, W,
1 IW, IFAIL)

INTEGER N, IW, IFAIL
real X, XEND, Y(N), TOL, G, W(IW)
CHARACTER*1 RELABS
EXTERNAL FCN, PEDERV, OUTPUT, G

3 Description

The routine advances the solution of a system of ordinary differential equations

y0i ¼ fiðx; y1; y2; . . . ; ynÞ; i ¼ 1; 2; . . . ; n;

from x ¼ X to x ¼ XEND using a variable-order, variable-step method implementing the BDF. The
system is defined by a subroutine FCN supplied by the user, which evaluates fi in terms of x and
y1; y2; . . . ; yn (see Section 5). The initial values of y1; y2; . . . ; yn must be given at x ¼ X.

The solution is returned via the user-supplied routine OUTPUT at points specified by the user, if desired:

this solution is obtained by C1 interpolation on solution values produced by the method. As the
integration proceeds a check can be made on the user-specified function gðx; yÞ to determine an interval

where it changes sign. The position of this sign change is then determined accurately by C1 interpolation
to the solution. It is assumed that gðx; yÞ is a continuous function of the variables, so that a solution of
gðx; yÞ ¼ 0:0 can be determined by searching for a change in sign in gðx; yÞ. The accuracy of the
integration, the interpolation and, indirectly, of the determination of the position where gðx; yÞ ¼ 0:0, is
controlled by the parameters TOL and RELABS. The Jacobian of the system y0 ¼ fðx; yÞ may be
supplied in routine PEDERV, if it is available.

For a description of BDF and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: X – real Input/Output

On entry: the initial value of the independent variable x.

Constraint: X 6¼ XEND.

D02 – Ordinary Differential Equations D02EJF

[NP3546/20A] D02EJF.1

On exit: if G is supplied by the user, X contains the point where gðx; yÞ ¼ 0:0, unless gðx; yÞ 6¼ 0:0
anywhere on the range X to XEND, in which case, X will contain XEND. If G is not supplied X
contains XEND, unless an error has occurred, when it contains the value of x at the error.

2: XEND – real Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in the
negative direction.

Constraint: XEND 6¼ X.

3: N – INTEGER Input

On entry: the number of differential equations, n.

Constraint: N � 1.

4: Y(N) – real array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn at x ¼ X.

On exit: the computed values of the solution at the final point x ¼ X.

5: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn.

Its specification is:

SUBROUTINE FCN(X, Y, F)

real X, Y(n), F(n)

where n is the actual value of N in the call of D02EJF.

1: X – real Input

On entry: the value of the independent variable x.

2: Y(n) – real array Input

On entry: the value of the variable yi, for i ¼ 1; 2; . . . ; n.

3: F(n) – real array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must be declared as EXTERNAL in the (sub)program from which D02EJF is called.
Parameters denoted as Input must not be changed by this procedure.

6: PEDERV – SUBROUTINE, supplied by the user. External Procedure

PEDERV must evaluate the Jacobian of the system (that is, the partial derivatives @fi
@yj
) for given

values of the variables x; y1; y2; . . . ; yn.

Its specification is:

SUBROUTINE PEDERV(X, Y, PW)

real X, Y(n), PW(n,n)

where n is the actual value of N in the call of D02EJF.

1: X – real Input

On entry: the value of the independent variable x.

D02EJF NAG Fortran Library Manual

D02EJF.2 [NP3546/20A]

2: Y(n) – real array Input

On entry: the value of the variable yi, for i ¼ 1; 2; . . . ; n.

3: PW(n,n) – real array Output

On exit: the value of @fi
@yj
, for i; j ¼ 1; 2; . . . ; n.

PEDERV must be declared as EXTERNAL in the (sub)program from which D02EJF is called.
Parameters denoted as Input must not be changed by this procedure.

If the user does not wish to supply the Jacobian, the actual argument PEDERV must be the dummy
routine D02EJY. (D02EJY is included in the NAG Fortran Library and so need not be supplied by
the user. The name may be implementation dependent: see the User’s Note for your implementation
for details.)

7: TOL – real Input/Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration. Hence
TOL affects the determination of the position where gðx; yÞ ¼ 0:0, if G is supplied.

D02EJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual relation
between TOL and the accuracy achieved cannot be guaranteed. The user is strongly recommended
to call D02EJF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge, the user might compare the results obtained

by calling D02EJF with TOL ¼ 10�p and TOL ¼ 10�p�1 if p correct decimal digits are required in
the solution.

Constraint: TOL > 0:0.

On exit: normally unchanged. However if the range X to XEND is so short that a small change in
TOL is unlikely to make any change in the computed solution, then, on return, TOL has its sign
changed.

8: RELABS – CHARACTER*1 Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, EST, is made. For the current step to be accepted the following condition must be satisfied:

EST ¼
ffi
1
n

Xn
i¼1

ðei=ð�r � jyij þ �aÞÞ2
s

� 1:0

where �r and �a are defined by

RELABS �r �a

’M’ TOL TOL
’A’ 0.0 TOL
’R’ TOL �
’D’ TOL �

where � is a small machine-dependent number and ei is an estimate of the local error at yi,
computed internally. If the appropriate condition is not satisfied, the step size is reduced and the
solution is recomputed on the current step. If the user wishes to measure the error in the computed
solution in terms of the number of correct decimal places, then RELABS should be set to ’A’ on
entry, whereas if the error requirement is in terms of the number of correct significant digits, then
RELABS should be set to ’R’. If the user prefers a mixed error test, then RELABS should be set to
’M’, otherwise if the user has no preference, RELABS should be set to the default ’D’. Note that in
this case ’D’ is taken to be ’R’.

Constraint: RELABS ¼ ’A’; ’M’; ’R’ or ’D’.

D02 – Ordinary Differential Equations D02EJF

[NP3546/20A] D02EJF.3

9: OUTPUT – SUBROUTINE, supplied by the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02EJF with XSOL=X (the
initial value of x). The user must reset XSOL to the next point (between the current XSOL and
XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02EJF will integrate to XEND with no further
calls to OUTPUT; if a call to OUTPUT is required at the point XSOL=XEND, then XSOL must be
given precisely the value XEND.

Its specification is:

SUBROUTINE OUTPUT(XSOL, Y)

real XSOL, Y(n)

where n is the actual value of N in the call of D02EJF.

1: XSOL – real Input/Output

On entry: the value of the independent variable x.

On exit: the user must set XSOL to the next value of x at which OUTPUT is to be called.

2: Y(n) – real array Input

On entry: the computed solution at the point XSOL.

OUTPUT must be declared as EXTERNAL in the (sub)program from which D02EJF is called.
Parameters denoted as Input must not be changed by this procedure.

If the user does not wish to access intermediate output, the actual argument OUTPUT must be the
dummy routine D02EJX. (D02EJX is included in the NAG Fortran Library and so need not be
supplied by the user. The name may be implementation-dependent: see the the Users’ Note for your
implementation for details.)

10: G – real FUNCTION, supplied by the user. External Procedure

G must evaluate the function gðx; yÞ for specified values x; y. It specifies the function g for which
the first position x where gðx; yÞ ¼ 0 is to be found.

Its specification is:

real FUNCTION G(X, Y)

real X, Y(n)

where n is the actual value of N in the call of D02EJF.

1: X – real Input

On entry: the value of the independent variable x.

2: Y(n) – real array Input

On entry: the value of the variable yi, for i ¼ 1; 2; . . . ; n.

G must be declared as EXTERNAL in the (sub)program from which D02EJF is called. Parameters
denoted as Input must not be changed by this procedure.

If the user does not require the root finding option, the actual argument G must be the dummy
routine D02EJW. (D02EJW is included in the NAG Fortran Library and so need not be supplied by
the user. The name may be implementation-dependent: see the the Users’ Note for your
implementation for details.)

D02EJF NAG Fortran Library Manual

D02EJF.4 [NP3546/20A]

11: W(IW) – real array Workspace
12: IW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D02EJF is
called.

Constraint: IW � ð12þ NÞ � Nþ 50.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or X ¼ XEND,
or N � 0,
or RELABS 6¼ ’M’; ’A’; ’R’; ’D’,
or IW < ð12þ NÞ � Nþ 50.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from the
current point x ¼ X. (See Section 5 for a discussion of this error test.) The components
Yð1Þ;Yð2Þ; . . . ;YðnÞ contain the computed values of the solution at the current point x ¼ X. If the
user has supplied G, then no point at which gðx; yÞ changes sign has been located up to the point
x ¼ X.

IFAIL ¼ 3

TOL is too small for D02EJF to take an initial step. X and Yð1Þ;Yð2Þ; . . . ;YðnÞ retain their initial
values.

IFAIL ¼ 4

XSOL lies behind X in the direction of integration, after the initial call to OUTPUT, if the OUTPUT
option was selected.

IFAIL ¼ 5

A value of XSOL returned by OUTPUT lies behind the last value of XSOL in the direction of
integration, if the OUTPUT option was selected.

IFAIL ¼ 6

At no point in the range X to XEND did the function gðx; yÞ change sign, if G was supplied. It is
assumed that gðx; yÞ ¼ 0 has no solution.

D02 – Ordinary Differential Equations D02EJF

[NP3546/20A] D02EJF.5

IFAIL ¼ 7

A serious error has occurred in an internal call to C05AZF. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ 8

A serious error has occurred in an internal call to D02XKF. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ 9

A serious error has occurred in an internal call to an interpolation routine. Check all subroutine
calls and array dimensions. Seek expert help.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy.
Users are advised to choose RELABS ¼ ’R’ unless they have a good reason for a different choice. It is
particularly appropriate if the solution decays.

If the problem is a root-finding one, then the accuracy of the root determined will depend strongly on @g
@x

and @g
@yi
, for i ¼ 1; 2; . . . ; n. Large values for these quantities may imply large errors in the root.

8 Further Comments

If more than one root is required, then to determine the second and later roots D02EJF may be called again
starting a short distance past the previously determined roots. Alternatively the user may construct his own
root finding code using D02NBF (and other routines in Chapter D02M/N, D02XKF and C05AZF.

If it is easy to code, the user should supply the routine PEDERV. However, it is important to be aware that
if PEDERV is coded incorrectly, a very inefficient integration may result and possibly even a failure to
complete the integration (IFAIL ¼ 2).

9 Example

We illustrate the solution of five different problems. In each case the differential system is the well-known
stiff Robertson problem.

a0 ¼ �0:04a� 104bc
b0 ¼ 0:04a� 104bc � 3� 107b2

c0 ¼ 3� 107b2

with initial conditions a ¼ 1:0, b ¼ c ¼ 0:0 at x ¼ 0:0. We solve each of the following problems with
local error tolerances 1:0E�3 and 1:0E�4.

(i) To integrate to x ¼ 10:0 producing output at intervals of 2.0 until a point is encountered where
a ¼ 0:9. The Jacobian is calculated numerically.

(ii) As (i) but with the Jacobian calculated analytically.

(iii) As (i) but with no intermediate output.

(iv) As (i) but with no termination on a root-finding condition.

(v) Integrating the equations as in (i) but with no intermediate output and no root-finding termination
condition.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

D02EJF NAG Fortran Library Manual

D02EJF.6 [NP3546/20A]

* D02EJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, IW
PARAMETER (N=3,IW=(12+N)*N+50)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
real H, XEND
INTEGER K

* .. Local Scalars ..
real TOL, X
INTEGER I, IFAIL, J

* .. Local Arrays ..
real W(IW), Y(N)

* .. External Functions ..
real D02EJW, G
EXTERNAL D02EJW, G

* .. External Subroutines ..
EXTERNAL D02EJF, D02EJX, D02EJY, FCN, OUT, PEDERV

* .. Intrinsic Functions ..
INTRINSIC real

* .. Common blocks ..
COMMON XEND, H, K

* .. Executable Statements ..
WRITE (NOUT,*) ’D02EJF Example Program Results’
XEND = 10.0e0
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 1: calculating Jacobian internally,’
WRITE (NOUT,*) ’ intermediate output, root-finding’
DO 20 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
K = 4
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,OUT,G,W,IW,

+ IFAIL)
*

WRITE (NOUT,99998) ’ Root of Y(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

20 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 2: calculating Jacobian by PEDERV,’
WRITE (NOUT,*) ’ intermediate output, root-finding’
DO 40 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
K = 4
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,PEDERV,TOL,’Default’,OUT,G,W,IW,

+ IFAIL)
*

WRITE (NOUT,99998) ’ Root of Y(1)-0.9 at’, X

D02 – Ordinary Differential Equations D02EJF

[NP3546/20A] D02EJF.7

WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

40 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 3: calculating Jacobian internally,’
WRITE (NOUT,*) ’ no intermediate output, root-finding’
DO 60 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,D02EJX,G,W,IW,

+ IFAIL)
*

WRITE (NOUT,99998) ’ Root of Y(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

60 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 4: calculating Jacobian internally,’
WRITE (NOUT,*) ’ intermediate output, no root-finding’
DO 80 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
K = 4
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,OUT,D02EJW,W,

+ IW,IFAIL)
*

IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 5: calculating Jacobian internally,’
WRITE (NOUT,*)

+ ’ no intermediate output, no root-finding (integrate to XEND)’
DO 100 J = 3, 4

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99996) X, (Y(I),I=1,N)
IFAIL = 0

*
CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,’Default’,D02EJX,D02EJW,

+ W,IW,IFAIL)
*

WRITE (NOUT,99996) X, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’

100 CONTINUE
STOP

*

D02EJF NAG Fortran Library Manual

D02EJF.8 [NP3546/20A]

99999 FORMAT (1X,A,e8.1)
99998 FORMAT (1X,A,F7.3)
99997 FORMAT (1X,A,3F13.5)
99996 FORMAT (1X,F8.2,3F13.5)

END
*

SUBROUTINE FCN(T,Y,F)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real F(N), Y(N)

* .. Executable Statements ..
F(1) = -0.04e0*Y(1) + 1.0e4*Y(2)*Y(3)
F(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)*Y(2)
F(3) = 3.0e7*Y(2)*Y(2)
RETURN
END

*
SUBROUTINE PEDERV(X,Y,PW)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real PW(N,N), Y(N)

* .. Executable Statements ..
PW(1,1) = -0.04e0
PW(1,2) = 1.0e4*Y(3)
PW(1,3) = 1.0e4*Y(2)
PW(2,1) = 0.04e0
PW(2,2) = -1.0e4*Y(3) - 6.0e7*Y(2)
PW(2,3) = -1.0e4*Y(2)
PW(3,1) = 0.0e0
PW(3,2) = 6.0e7*Y(2)
PW(3,3) = 0.0e0
RETURN
END

*
real FUNCTION G(T,Y)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real Y(N)

* .. Executable Statements ..
G = Y(1) - 0.9e0
RETURN
END

*
SUBROUTINE OUT(X,Y)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real Y(N)

* .. Scalars in Common ..
real H, XEND
INTEGER I

* .. Local Scalars ..
INTEGER J

* .. Intrinsic Functions ..

D02 – Ordinary Differential Equations D02EJF

[NP3546/20A] D02EJF.9

INTRINSIC real
* .. Common blocks ..

COMMON XEND, H, I
* .. Executable Statements ..

WRITE (NOUT,99999) X, (Y(J),J=1,N)
X = XEND - real(I)*H
I = I - 1
RETURN

*
99999 FORMAT (1X,F8.2,3F13.5)

END

9.2 Program Data

None.

9.3 Program Results

D02EJF Example Program Results

Case 1: calculating Jacobian internally,
intermediate output, root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 2: calculating Jacobian by PEDERV,
intermediate output, root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 3: calculating Jacobian internally,
no intermediate output, root-finding

Calculation with TOL = 0.1E-02
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

D02EJF NAG Fortran Library Manual

D02EJF.10 [NP3546/20A]

Case 4: calculating Jacobian internally,
intermediate output, no root-finding

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05834
4.00 0.90551 0.00002 0.09447
6.00 0.87930 0.00002 0.12068
8.00 0.85858 0.00002 0.14140

10.00 0.84136 0.00002 0.15862

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
6.00 0.87926 0.00002 0.12072
8.00 0.85854 0.00002 0.14145

10.00 0.84136 0.00002 0.15863

Case 5: calculating Jacobian internally,
no intermediate output, no root-finding (integrate to XEND)

Calculation with TOL = 0.1E-02
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15862

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15863

D02 – Ordinary Differential Equations D02EJF

[NP3546/20A] D02EJF.11 (last)

	D02EJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	X
	XEND
	N
	Y
	FCN
	X
	Y
	F

	PEDERV
	X
	Y
	PW

	TOL
	RELABS
	OUTPUT
	XSOL
	Y

	G
	X
	Y

	W
	IW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

